三角函数公式话题讨论。解读三角函数公式知识,想了解学习三角函数公式,请参与三角函数公式话题讨论。
三角函数公式话题已于 2025-08-04 02:51:08 更新
三角函数展开式公式:sin(a+b)=sinacosb+cosasinb,sin(a-b)=sinacosb-sinbcosa,cos(a+b)=cosacosb-sinasinb。积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·...
sin(-α)= -sinα;cos(-α) = cosα;sin(π/2-α)= cosα;cos(π/2-α) =sinα;sin(π/2+α) = cosα;cos(π/2+α)= -sinα;sin(π-α) =sinα;cos(π-α) = -cosα;sin(π+α)= -sinα;cos(π+α) =-cosα;tanA= sinA/cosA;tan(π/2+α)=-c...
cos(x+y)=cosxcosy-sinxsiny cos(x+y)的展开就是下面这个公式的运用:cos ( α ± β ) = cosα cosβ ∓ sinβ sinα(和角公式)和角公式又称三角函数的加法定理是几个角的和(差)的三角函数通过其中各个角的三角函数来表示的关系。三角函数是数学中属于初等函数中的超越函数的一...
tan(π-x)=-tanx 原理:三角函数值中,正弦一二象限为正,余弦一四象限为正,正切一三象限为正(终边)(5)sin(π/2+x)=cosx cos(π/2+x)=-sinx tan(π/2+x)=-cotx (6)sin(π/2-x)=cosx cos(π/2-x)=sinx tan(π/2-x)=cotx (7)展开公式 sin(3π/2+x)=sin(π+π/2+...
公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα(k∈Z)三角函数诱导公式二 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=...
sinA=a/c (即角A的对边比斜边);cosA=b/c (即角A的邻边比斜边);tanA=a/b (即角A的对边比邻边);cotA=b/a (即角A的邻边比对边);secA=c/b (即角A的斜边比邻边);cscA=c/a (即角A的斜边比对边);sinAsinA+sinBsinB=1;sinA/cosA=tanA;tanA=1/cotA ...
三角函数的基本公式:1、公式一:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα 2、公式二:sin(π+α)=—sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα 3、公式三:利用公式二和公式三可以...
三角函数和积化差和差化积公式如下:1、积化和差公式有sinα*cosβ=(1/2)sin(α+β)+sin(α-β);cosα*sinβ=(1/2)sin(α+β)-sin(α-β);cosα*cosβ=(1/2)cos(α+β)+cos(α-β);sinα*sinβ=(1/2)cos(α+β)-cos(α-β)。2、差化积公式有...
常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(...